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Abstract. We calculate higher order corrections to the resolved component of the electroproduction cross
section of large-E⊥ hadrons. The parton distributions in the virtual photon are studied in detail and a
NLO parametrization of the latter is proposed. The contribution of the resolved component to the forward
production of large-E⊥ hadrons is calculated and its connection with the BFKL cross section is discussed.

1 Introduction

The electroproduction cross section of large-E⊥ hadrons
can be split up in two parts. One of these describes the
reaction in which the initial virtual photon takes part di-
rectly in the hard scattering process; it is called the direct
part. But the photon can also act as a composite object
which is a source of collinear partons which will take part
in the hard subprocess; this mechanism is usually referred
to as the resolved process and defines the parton distri-
butions in the virtual photon which have the feature of
being proportional to lnE2

⊥/Q2 in the asympototic region
where E2

⊥ � Q2 (Q2 is the absolute value of the photon
virtuality).

This distinction between direct and resolved component
parts is especially useful in photoproduction reactions in
which a quasi-real photon is present in the initial state (for
a review, see [1]). In this case the parton distributions in
the real photon are proportional to lnE2

⊥/Λ2
QCD and can

be quite large. The interest in these real distributions dates
from the pioneering work by Witten [2] who showed that
their asymptotic behavior can be completely calculated in
perturbative QCD, a result which opened the way to inter-
esting tests of the theory. Nevertheless, when E2

⊥/Λ2
QCD

decreases, the importance of the non-perturbative contri-
butions grows and we return to a situation similar to that of
the proton structure functions for which non-perturbative
inputs are necessary.

The situation is clearer when the initial photon is not
real, but has a virtuality Q2 much larger than Λ2

QCD. In this
case the non-perturbative contributions (for instance that
of the vector meson dominance type) are suppressed by
powers of Q2 and we are back in the realm of perturbative
QCD. The magnitude of the virtual distributions is smaller
than that of the real distributions. Nonetheless, they are
observable, anddedicated experiments have studied the vir-
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tual parton distributions in e+e− collisions [3,4] and in the
electroproduction of large-E⊥ jets [5–7] and hadrons [8,9].
These studies acquire a quantitative status when data are
compared with theoretical predictions calculated beyond
the leading logarithm approximation [10–14]. It is the aim
of this paper to establish such NLO expressions for the
resolved component of the electroproduction of large-E⊥
hadrons. We studied the corresponding direct component
in [15].

This work puts the theoretical predictions on a firmer
ground since the full cross section formed by the direct
and the resolved component parts is now calculated at the
NLO approximation. In [15] we founded predictions for the
leptoproduction of forward large-E⊥ hadrons on a NLO cal-
culation of the direct term only. Then we observed that
the resolved component, calculated at the lowest order,
was not negligible. Here we pursue this study of the for-
ward production now including the HO corrections to the
resolved part. This allows us to refine our predictions and
our comparisons with the BFKL-type cross section which
should constitute a non-negligible part of the forward cross
section [16,17].

In the next sectionwe gather kinematical definitions and
general expressions concerning the resolved cross section,
including a discussion of the kinematical domain in which
such a resolved component can be defined. Section 3 is
devoted to the general structure of the NLO corrections
and the issue of the factorization scheme. In Sect. 4 we
propose a parametrization of the NLO parton distributions
in the virtual photon; finally, we consider some numerical
applications in Sect. 5.

2 The resolved component

In this section we present the kinematical definitions and
the general expressions necessary for the study of the re-
solved component. This determines the frame in which the
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HO calculation described in the next section will be per-
formed. The cross section of the reaction e(�) + p(P ) →
e(�′) + h(P4) + X,

dσ

dϕdQ2dy
=

α

2π
1
2π

1
2S

1
2

∫
�µνTµν

Q4 dPS , (1)

is written in terms of the leptonic tensor �µν = 2(�µ�′ν +
�ν�′µ − gµν(� · �′ − m2

e)) and of the hadronic tensor Tµν

which describes the photon–proton collision. We define the
photon variables Q2 = −q2 = −(� − �′)2 and y = q0−qz

�0−lz =
P ·q
P ·� = Q2/(xBjS) in a frame in which Pµ has no transverse
component (we neglect the proton mass and P z is positive
(HERA convention)). S is given by S = (P + �)2 and xBj
has the usual definition xBj = Q2/2P · q; ϕ is the photon
azimuthal angle. The differential phase space of the final
hadrons is given by (a sum over the number of final hadrons
is understood in (1)):

dPS = (2π)4δ4

(
q + P −

n∑
i=1

pi

)
n∏

i=1

d4pi

(2π)3
δ(p2

i )θ(p
0
i ) .

(2)
The hadronic tensor can be calculated as a convolution

between the partonic tensor tµν which describes the inter-
action between the virtual photon and the parton of the
proton, and the parton distribution in the protonGa(x, M).
The fragmentation of the final parton which produces a
large-E⊥ hadron is described by the fragmentation func-
tion Dh

b (z, MF). These distributions depend on the factor-
ization scales M and MF,∫

TµνdPS (3)

=
∑
a,b

∫
dx

x
Ga(x, M)

∫
dz Dh

b (z, MF)tab
µν · dps,

where dps is the phase space element of the partons pro-
duced in the hard photon–parton collision. From expres-
sions (2) and (3), we obtain

dσ

dϕdQ2dydE⊥4dη4

=
E⊥4

2π
α

2π

∑
a,b

∫
dxGa(x, M)

∫
dz

z2 Dh
b (z, MF)

×
∫

dϕ4

2π
1

(4π)2
1

2xS

�µνtab
µν

q4 dps′, (4)

where the phase space dps′ no longer contains parton 4
which fragments into h(P4) (η4 is the pseudo-rapidity of
the observed hadron).

It is useful to give a more explicit form to the ten-
sor product in the γ∗–p frame by defining the transverse
polarization vectors εµ

1 = (0, 1, 0, 0), εµ
2 = (0, 0, 1, 0) and

the scalar polarization vector εµ
s = 1√

Q2
(qz, 0, 0, q0) with

qµ = (q0, 0, 0, qz) the virtual photon momentum

�µνtµν = Q2(t11 + t22) + 4
(

Q2(1 − y)
y2 − m2

e

)
t11

+4
2 − y

y
�x

√
Q2 ts1 + Q2 4(1 − y)

y2 tss , (5)

the transverse momentum �x of the initial lepton being
along the x-axis.

In the limit Q2 → 0 and after azimuthal averaging over
ϕ4 we recover the unintegrated Weizsäcker–Williams ex-
pression

1
2

�µνtµν

Q4 =
(

1 + (1 − y)2

yQ2 − 2y m2
e

Q4

)
σ⊥ + O

((
Q2)0) ,

(6)
with σ⊥ = 1

2y (t11 + t22).
Actually the limit (6) is correct only if lim

Q2→0
tss =

O(Q2). This is not true if an initial collinearity is present in
the partonic tensor (light partons are massless) which leads
to the behavior lim

Q2→0
tss = O(1). This point is discussed

at the end of this section.
The partonic tensor is given by a perturbative expres-

sion in αs. The Born contribution is of order O(αs) and
corresponds to theQCDCompton subprocess γ∗+q → g+q
and the fusion process γ∗ + g → q + q̄. Higher order O(α2

s )
corrections to the Born cross section have been calcu-
lated in [15]. In the course of these HO calculations a re-
solved component appears, corresponding to subprocesses
in which the virtual photon creates a collinear q–q̄ pair;
the quark or the antiquark subsequently interacts with a
parton of the proton.

Let us study this contribution in detail by considering
the simple model illustrated by the gauge invariant set of
Feynman graphs displayed in Fig. 1. The neutral parton
of momentum p is off-shell and is part of a hard process
also involving a parton of the proton. The final parton
of momentum p4 fragments into the observed large-E⊥
hadron of transverse energy E⊥4. All the results described
below can easily be obtained from the expressions given in
Appendix 1.

The cross section corresponding to the graphs of Fig. 1
has double and single poles in k2 = (q − k′)2. The inter-
ference term between graphs (a) and (b) has a single pole
which leads to an expression proportional to ln p2

⊥4
−q2 , after

integration over k′
⊥. However, a prefactor q2 is present in all

tensor components tAB (A, B= S, 1, 2). As a result, these
components have no singularities when q2 tends to zero.
This well-known behavior is due to current conservation
(for the components involving a scalar photon) and to the
fact that interference terms are not singular for transverse
photons. Therefore, let us concentrate on the square of
graph (a) and start with the transverse component which
has the expression (after integration over the azimuthal

q k’ p

p4

+ q

p4

k’
k

Fig. 1. Feynman graphs leading to a resolved contribution
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angle ϕk′)

tii =
α

2π
3e2

f

∫
dz
[
(1 − z)2 + z2]

×
∫ p2

⊥4/(1−z)

−q2z

dk2

k4

{
zq2 − k2 } |µ(0)|2

2z

(i = 1, 2), (7)

where µ(0) is the hard subprocess amplitude, here repre-
senting the process k+p → p4, in which we have set k2 and
k2

⊥ equal to zero. The upper limit of the k2-integration in-
dicates the scale at which the collinear approximation used
in (7) by setting k2 and k2

⊥ equal to zero is no longer valid.
Using formulae (4) and (5), and after integration over k2,
the contraction with the leptonic tensor leads to

2πdσ

dϕdQ2dy
=

α

2π

[
1 + (1 − y)2

y

1
Q2 − 2m2

ey

Q4

]
(8)

×
∫

dz
α

2π
3e2

f [(1 − z)2 + z2]

×
{

ln
p2

⊥4

Q2 − ln z − ln(1 − z) − 1
}

σ̂ ,

where we define σ̂ = |µ(0)|2
2zyS (we have not written the contri-

bution of order O(Q2/p2
⊥4)). This expression is the lowest

order resolved cross section and is exactly the one which is
obtained in the course of the calculation of HO corrections
to the direct Born terms [15]. The Weiszäcker–Williams
distributions of the virtual photon in the initial electron
and the quark distribution in the virtual photon are uni-
versal as they do not depend on the particular hard process
described by cross section σ̂. Expression (8) is the starting
point of this paper. Indeed, when ln p2

⊥4
Q2 is large, one cannot

content oneself with this approximation, and corrections of
the type αk

s

(
ln p4

⊥
Q2

)n

with k = n, n+1 must be calculated
and resummed. These corrections modify expression (8) at
the leading order (k = n) and at the next-to-leading order
(k = n + 1) approximation.

In order to avoid double counting, expression (8) must
be subtracted from the NLO direct cross section. Actu-
ally the exact expression to be subtracted is a matter of
factorization scheme. We define the resolved component by

2πdσres

dϕdQ2dy
=

α

2π

[
1 + (1 − y)2

y

1
Q2 − 2m2

ey

Q4

]
(9)

×
∫

dz
α

2π
3e2

f

[
(1 − z)2 + z2] ln M2

γ

Q2 σ̂,

where we introduce the factorization scale Mγ with Mγ =
O(E⊥4). After subtraction, the part of (8) left in the direct
HO corrections is obtained from (8) by the substitution
ln p2

⊥4
Q2 → ln p2

⊥4
M2

γ
. We call this factorization scheme the

virtual factorization scheme. This is a natural scheme in
virtual photoproduction in which all the lnQ2 terms are
resummed in the parton distributions. Then the total NLO

cross section is given by the sum of the subtracted direct
cross section and of the resolved cross section calculated
at NLO at the scale Mγ . The variations of the resolved
cross section with Mγ are partly compensated by the lnM2

γ

terms; these remain in the direct cross section so that the
total NLO cross section exhibits a smaller sensitivity to
Mγ than the LO cross section.

Of course this procedure is useful as long as p2
⊥4 � Q2.

Actually the collinear approximation used in (7) is valid
if Q2 � k2

⊥ � p2
⊥4, which allows us to put k2

⊥ = 0 in
the hard cross section. When p2

⊥4 � Q2, this upper limit
is incorrect. Let us rewrite the k2-integral in (7) in terms
of k2

⊥:∫
−q2z

dk2

|k2|σ(k2
⊥) =

∫
0

dk2
⊥

k2
⊥ − q2z(1 − z)

σ(k2
⊥) . (10)

This integral is sensitive to the dependence on k2
⊥ of the

2 → 2 subprocess cross section σ̂(k2
⊥) which behaves ap-

proximately like O
(

1
(k⊥+p⊥4)2

)
. This behavior shows that

no collinear logarithmic terms (coming from the denom-
inator k2

⊥ + Q2z(1 − z)) are present when p2
⊥4 � Q2.

Therefore, the resolved component must be proportional
to the result of k2

⊥-integration in which the upper limit
p2

⊥4 is replaced by Q2 + p2
⊥4. For p2

⊥4 � Q2 we have the
case already discussed and for p2

⊥4 � Q2, there is no re-
solved component.

As a consequence it is more appropriate to define the
factorization scale

M2
γ = Q2 + C2

γE2
⊥4 (11)

(E⊥4 is the transverse energy of the observed hadron),
which has the following correct properties.
(1) It does not depend on kinematical variables internal to
the subprocess which may lead to incorrect results when
HO corrections are calculated [19].
(2) The resolved component calculated at Mγ vanishes
when Q2 � E2

⊥4.
(3) Again we find the conventional factorization scale Mγ �
CγE⊥4 when E2

⊥4 � Q2, Cγ being an arbitrary constant
of order 1.

Let us finish this section by discussing the tensor com-
ponents tis and tss which come from the square of graph (a)
in Fig. 1. The components tis behave like

√
q2 ln p2

⊥4
−q2 and

have no singularity at the limit q2 → 0. On the contrary
tss has a constant behavior when q2 → 0

tss =
α

2π
3e2

f

∫
dz 4z(1−z)

∫ p2
⊥4/(1−z)

−q2z

d|k|2
k4 (−q2)

|µ(0)|2
2

,

or

tss =
α

2π
3e2

f (12)

×
∫

dz 4z(1 − z)
(

1 − −q2z(1 − z)
p2

⊥4

) |µ(0)|2
2z

,
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a result which leads to the scalar cross section

2πdσscalar

dϕdQ2dy
=

α

2π
2(1 − y)

y

1
Q2

∫
dz

α

2π
3e2

f 4z(1 − z)σ̂ .

(13)
In going from (12) to (13), we dropped the −q2z(1−z)/p2

⊥4
term which depends, through p⊥4, on the detailed kine-
matics of the subprocess.

We observe that tss has a “constant” behavior when
q2 → 0 due to the double pole of the cross section. Actually
the limit q2 → 0 corresponds to a non-perturbative region
for the k2-integration. If instead of |k2

min| = −q2z we set
|k2

min| ∼ Λ2
QCD, we would obtain a vanishing cross section

when q2 → 0. A similar result is obtained if we consider
massive quarks (with |k2

min−m2| = −q2z+ m2

1−z ).Therefore,
for a physical process and a real photon, there is no tss

contribution, as can be expected.
However, let us notice that for small values of Q2 ∼

Λ2
QCD, the resolved cross sections, as defined in (8) and (13),

strongly depend on the way the k2-integral is regularized,
different lower bounds produce different z-dependences,
and thus different physical results even when E2

⊥4/Q2 is
large. This paradox is however solved by the HO correc-
tion to the parton distributions in the photon discussed in
the next section. There we shall see that the NLO parton
distributions contain a term that cancels the unwanted
z-dependent contribution, up to a vanishing term when
E2

⊥4/Q2 tends to infinity. Actually this result is true for all
z-dependent terms of collinear origin (related to the lower
limit of the k2-integration) present in (8) and (11). As a
consequence the scalar cross section (13) will be cancelled.

3 NLO corrections

In Sect. 2 we defined the resolved component of the trans-
verse cross section (i = 1, 2). (Here σ̂B is defined as the Born
amplitude squared divided by the flux factor z.) We have

tii =
α

2π
e2
f

∫
dz P (0)

qγ (z) ln
M2

γ

Q2 σ̂B, (14)

where the factorization scale is given by (11) and P
(0)
qγ (z) =

3[z2 + (1 − z)2] (for one quark species). Expression (14)
contains the lowest order (O(α0

s )) parton distributions in
the virtual photon:

q(z, M2
γ , Q2) =

α

2π
e2
f P (0)

qγ (z) ln
M2

γ

Q2 . (15)

The Born cross section σ̂B describes the scattering between
a quark of the virtual photon and a parton of the proton
producing two large-p⊥ partons in the final state.

Leading logarithm (LL) corrections, corresponding to
the emission of collinear gluons by the initial quark, can be
obtained by solving the following inhomogeneous DGLAP
equation [18,19] (we only reproduce the evolution equation
for the non-singlet (NS) quark distribution qNS

f = qf +qf −

Nf∑
f=1

(qf + qf )/Nf ) with 〈e2
f 〉 =

∑
f

e2
f/Nf

M2 ∂qNS
f (M2, z)
∂M2 =

α

2π
2[e2

f − 〈e2
f 〉] P (0)

qγ (z)

+
αs(M2)

2π

∫ 1

z

dz′

z′ P (0)
qq

( z

z′
)

qNS
f (M2, z′), (16)

where P
(0)
qq (z) = CF((1 + z2)/(1 − z))+. The lowest order

expression (15) is solution of such an equation when P
(0)
qq

is set equal to zero. The solution of (16) for the moments
qNS
f (M2, Q2, n) =

∫ 1
0 dz zn−1 qNS(M2, Q2, z) is given by

(d(n) = 2P
(0)
qq (n)/β0, and β0 is the lowest order coefficient

of the β-function expansion ∂αs
∂ ln(µ2) = β(αs) ∼= − α2

s
4π β0)

qNS,LL
f (M2, Q2, n)

=
4π

αs(M2)
α

2π
2(e2

f − 〈e2
f 〉)P (0)

qγ (n)
β0(1 − d(n))

×
(

1 −
(

αs(M2)
αs(Q2)

)1−d(n)
)

, (17)

with the boundary condition qNS,LL
f (Q2, Q2, n) = 0. The

leading logarithm NS expression for the resolved cross sec-
tion is now given by

tLL
ii = qNS,LL

f ⊗ σ̂B , (18)

which is expression (14) in which the lowest order parton
distribution is replaced by the LL solution (17).

The next step is to look for a next to leading order
(NLO) expression for tii, which requires the calculations
of HO corrections to both qLL and σ̂B. Indeed the structure
of these HO corrections is the following. The hard cross
section has the expression (σ̂B is of order O(α2

s ))

σ̂NLO = σ̂B + α3
sB, (19)

whereas the parton distributions behave, in the asymptotic
domain M2

γ/Q2 � 1, like

qNLO =
a

αs(M2
γ )

+ b . (20)

It is clear from (19) and (20) that a NLO expression for
tii can only be obtained by calculating both α3

sB and b.

3.1 The hard resolved cross section at NLO

The calculation of the HO corrections to the hard resolved
cross section is the simpler part of the NLO program, since
these HO are the same in real and virtual photoproduc-
tion reactions, provided we work in the same factorization
scheme. Therefore, we can borrow the results of [20] ob-
tained for the real photoproduction of large-E⊥ hadrons.
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Let us elaborate this point by first studying the resolved
Born term. In the real case, instead of (7) we obtain the
following expression

tii =
α

2π
3e2

f

∫
dz
[
z2 + (1 − z)2 − ε

]
× (4πµ2)ε

(1 − ε)
Γ (1 − ε)
Γ (1 − 2ε)

∫ p2
⊥4

0

dk2
⊥

(k2
⊥)1+ε

σ̂B
ε , (21)

in which we use the dimensional regularization and n =
4 − 2ε. The expression between the square brackets is
the n-dimensional DGLAP branching function; the factor
(4π)εΓ (1−ε)/(Γ (1−2ε)(1−ε)) comes from the azimuthal
integration and the n-dimensional photon spin average. Af-
ter integration over k2

⊥, we obtain
(
1/ε = 1

ε + ln 4π − γE

)
tii =

α

2π
e2
f

∫
dz

(
− 1

ε
+ ln

M2
γ

µ2

)
P (0)

qγ (z)σ̂B
ε (22)

+
α

2π
e2
f

∫
dz

(
ln

p2
⊥4

M2
γ

P 0
qγ(z) − P 0

qγ(z) + 3
)

σ̂B,

where the limit, when ε tends to zero, of the n-dimension
Born cross section σ̂B

ε is simply σ̂B of expression (14). This
expression is identical to that obtained in the calculation
of the HO corrections to the real direct term.

At this point, if we subtract the term proportional to(
− 1

ε + ln M2
γ

µ

)
from (22), which defines the MS factoriza-

tion scheme, we obtain a direct HO subtracted contribution
different from the one found in the virtual case (cf. expres-
sions (8) and (9)). However, as we shall see in the next
subsection, this scheme dependence is compensated for by
the NLO corrections to the parton distributions.

Now let us go one step further and consider O(αs)
corrections to the resolved expression (9). These HO cor-
rections are the same in the real and in the virtual case,
with the exception of collinear contributions coming from
the branching γ∗ → q + q + g and containing (ln p2

⊥4/Q2)n

(n = 1, 2) terms. These logarithmic terms can be factorized
and resummed at the NLO approximation with the result
(we consider only the non-singlet case)

qNLO
γ (M2

γ , Q2) ⊗
(

1 +
αs

2π
hqq +

αs

2π
P (0)

qq ln
p2

⊥4

M2
γ

)
⊗ σ̂B,

(23)
where ⊗ indicates convolutions in the longitudinal variable.
The factor 1 in the parentheses corrsponds to the Born con-
tribution (9). The term αs

2π hqq ⊗ σ̂B is the collinear HO cor-
rection calculated in the virtual factorization scheme (re-
summation of all the lnQ2 terms in the parton distribution
function with the boundary condition qNLO

γ (Q2, Q2) = 0).
However the physical (direct + resolved) cross section is
factorization scheme invariant and can be written in terms
of the MS quantities qNLO

γ and hqq(z). As a result we can use
the HO correction calculated in [20] in the MS scheme if we
also use parton distributions (and a direct term) calculated
in the same scheme.

The authors of [12–14] also worked in the MS scheme in
their study of the electroproduction of large-p⊥ jets, and

they established the expression which must be subtracted
from the virtual direct term in order to obtain the MS
direct term. We comment on their results at the end of
Sect. 3.2.

3.2 The virtual parton distributions at NLO

In order to delimit the problem of the factorization scheme
(FS) in the virtual parton distributions, we study the simple
case of the DIS on a virtual photon and we consider the n-
moment of the structure function Fγ

2 = F γ
2 (x, K2, Q2)/x

in which Q2 = |q2| is the virtuality of the target photon,
K2 = |k2| is the virtuality of the probe photon and x
the Bjorken variable. To make the connection with the
transverse cross section defined in (7), Fγ

2 is defined by an
average over the transverse spin of the target photon only.
To simplify the discussion we only consider the non-singlet
contribution. Fγ

2 is the sum of a resolved part and a direct
part (we drop the indices n)

Fγ
2 (K2, Q2) = C2,q(αs(K2)) · qNS

γ (K2, Q)+CNS
2,γ(αs(K2)) .

(24)

In (24) Fγ
2 is proportional to

Nf∑
f=1

e2
f [e2

f −〈e2〉]; we drop this

factor which is useless in the present discussion. The direct
part, CNS

2,γ , and the resolved hard cross section C2,q (the
Wilson coefficient) are expansions in αs(K2). All the lnQ2-
dependent terms are collected in the virtual quark distri-
bution qNS

γ with the boundary condition qNS
γ (Q2, Q2) = 0.

This defines the virtual factorization scheme already men-
tioned in Sect. 2. In fact (24) is the final result obtained
by Uematsu and Walsh [10] in their study of the virtual
photon structure function, using the OPE and the MS
factorization scheme as a starting point. The distribution
qNS
γ verifies the inhomogeneous DGLAP equation (16) in

which the lowest order branching function P
(0)
qγ and P

(0)
qq

must be replaced by the all order functions PNS
qγ (αs(M2

γ ))

and PNS(αs(M2)) = αs(M2)
2π P

(0)
qq + . . . which are expan-

sions in αs(M2) and depend on the factorization scheme.
The solution of (16) can be written (from now on we drop
the index NS)

qγ(K2, Q2) =
α

2π

∫ αs(K2)

αs(Q2)

dα′ Pqγ(α′)
β(α′)

e
∫ αs(K2)

α′
dα′′)
β(α′′) P (α′′)

.

(25)
Fγ

2 , being a physical observable, must be FS scheme
invariant and cancellation must exist in (24) between the
various scheme dependent contributions. Let us first note
that C2,γ(K2) is FS scheme invariant because

F2
γ (Q2, Q2) = C2,γ(αs(Q2)) . (26)

To study the scheme dependence of qγ , let us start
from expression (25) and define a new DGLAP branching
function P by

P = P − δP, (27)
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where δP is an arbitrary expansion in αs starting at order
O(α2

s ):

qγ(K2, Q2) =
α

2π
e− ∫ αs(K2)

0
dα′′

β(α′′) δP (α′′) ·q̃γ(K2, Q2), (28)

with q̃γ given by

q̃γ(K2, Q2) ≡
∫ αs(K2)

αs(Q2)

dα′

β(α′)

[
Pqγ(α′)e

∫ α′
0

dα′′
β(α′′) δP (α′′)

]
×e

∫ αs(K2)
α′

dα′′
β(α′′) P (α′′)

. (29)

We see that the variation δP can be absorbed in C2,q

(the hard resolved subprocess) and Pqγ , thus defining new
expansions in αs, C2,q(αs(K2)) and P̃qγ(α′), whereas Fγ

2
is kept unchanged:

Fγ
2 (K2, Q2) = C2,q(αs(K2))q̃γ(K2, Q2) + C2,γ(αs(K2)) .

(30)
Let us now study the effects of modifying P̃qγ

P̃qγ = P qγ − δPqγ , (31)

with the arbitrary series δPqγ starting at order O(αs):

q̃γ(K2, Q2) (32)

= qγ(K2, Q2) − α

2π

∫ αs(K2)

αs(Q2)

dα′

β
δPqγ e

∫ αs(K2)
α′

dα′′
β P ,

where the parton distribution qγ is calculated in the bar-
scheme

qγ(K2, Q2) =
α

2π

∫ αs(K2)

αs(Q2)

dα′

β
P qγ e

∫ αs(K2)
α′

dα′′
β P . (33)

Finally for F2
γ we obtain the expression

Fγ
2 (K2, Q2) = C2,q(αs(K2))

(
qγ(K2, Q2) + qB

γ (K2, Q2)
)

+C2,γ(αs(K2)), (34)

where

C2,γ(αs(K2)) = C2,γ(αs(K2)) (35)

−C2,q(αs(K2))
α

2π

∫ αs(K2)

0

dα′

β
δPqγ e

∫ αs(K2)
α′

dα′′
β P

and

qB
γ (K2, Q2) =

α

2π

∫ αs(Q2)

0

dα′

β
δPqγ e

∫ αs(K2)
α′

dα′′
β P . (36)

Therefore in thenew factorization scheme (thebar-scheme),
the structure of the expression for Fγ

2 is the same as in
the original scheme, but the parton distribution does not
vanish at K2 = Q2 since qB

γ (Q2, Q2) is different from zero.
Therefore, by going from the virtual FS to the bar-scheme,

we find the boundary condition that the bar distribution
must verify. By rewriting (36) as

qB
γ (K2, Q2) (37)

= e
∫ αs(K2)

αs(Q2)
dα′

β(α′) P α

2π

∫ αs(Q2)

0

dα′

β(α′)
δPqγ e

∫ αs(Q2)
α′

dα′′
β(α′′) P

,

we see that qB
γ (K2, Q2) verifies the homogeneous DGLAP

equation and that the boundary condition is given, at the
lowest order (P = αs

2π P
(0)
qq , β(αs) = − α2

s
4π β0 and δPqγ =

αs
2π δP

(1)
qγ ) by

qB
γ (Q2, Q2) = − α

2π
δP

(1)
qγ

P
(0)
qq

. (38)

The bar-scheme can be any scheme, but it is conve-
nient to work in the MS factorization scheme in which the
two-loop branching functions PNS

qγ and PNS are known.
Moreover, in the electroproduction of large-p⊥ hadrons we
also know the NLO resolved subprocess cross section (the
equivalent of C2,q) calculated in the MS scheme in [20]. It
is easy to obtain δP

(1)
qγ from expression (35) written at the

lowest order on αs

C2,γ − C2,γ =
α

2π
δP

(1)
qγ

P
(0)
qq

. (39)

C2,γ is the MS direct term [22] and C2,γ is the virtual
scheme direct1 term [10]

C2,γ =
α

2π
6
{

8x(1 − x) − 2 +
(
x2 + (1 − x)2

)
ln

1
x2

}
,

(40)
which leads to

qB
γ (Q2, Q2) (41)

= − α

2π
6
{(

x2 + (1 − x)2
)
ln[x(1 − x)] + 1

}
.

Let us finish this section by going back to the direct
cross section of large-E⊥ hadron electroproduction.TheMS
boundary condition can be obtained by comparing expres-
sion (8) calculated in the virtual case and expression (22)
corresponding to the real case. We see that subtracting
(z2 +(1−z)2) ln 1

z(1−z) −1 from the virtual expression, we
find the MS expression 1 − (z2 + (1 − z)). The term that
we subtracted is equal to (41) as can be expected2.

1 This direct term corresponds to transversely polarized pho-
tons whereas the expression of [10] also contains the scalar
contribution.

2 The subtraction term established in [12] is identical to the
one found here except for a term proportional to [z2 + (1 −
z)2] ln z. Therefore it does not totally ensure the transformation
from the virtual scheme to the MS scheme (for instance from
C2,γ to C2,γ in the DIS case).
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q k’ p

p4

k
Fig. 2. A higher order correction
to the Feynman graphs of Fig. 1

3.3 The scalar parton distribution at HO

In Sect. 2 we found a scalar resolved contribution (13) to the
electroproduction cross section corresponding to the scalar
distribution qS

0 (z) = α
2π 3e2

q[4z(1 − z)]. HO corrections to
this distribution correspond to the Feynman graph of Fig. 2
(with an extra gluon in comparison to Fig. 1). Working in
the LL approximation and considering only terms propor-
tional to lnK2/Q2), we have

qS
1 (x, K2, Q2) (42)

=
∫

dzqS
0 (z)

∫
dz′ αs

2π
P (0)

qq (z′)δ(zz′ − x) lnK2/Q2,

or qS
1 (n, K2, Q2) = qS

0 (n) αs
2π P

(0)
qq (n) lnK2/Q2. The full LL

expression qS(n) =
∞∑

k=1
qS
k(n) is easily resummed

qS(n, K2, Q2) (43)

=
∫ αs(K2)

αs(Q2)

dα′

β(α′)
qS
0 (n)

α′

2π
P (0)

qq (n)e
∫ αs(K2)

α′
dα′′

β(α′′)
α′′
s

2π P (0)
qq .

This solution is similar to expression (25), but with an
inhomogeneous branching function starting at order O(αs);
it can be written

qS(n, K2, Q2) = −qS
0 (n)

1 −
(

αs(K2)
αs(Q2)

)−2P (0)
qq /β0

 .

(44)
Adding this contribution to the lowest order one (13), we
see that the latter is cancelled and replaced by a contribu-
tion which vanishes asymptotically because of the factor
(αs(K2)/αs(Q2))−2P (0)

qq /β0 . Therefore the scalar contribu-
tion (13) which is target dependent (it depends on the
regularization of the k2-integral as discussed in Sect. 2) is
cancelled. This mechanism is actually quite general and
also valid for the transverse component.

Therefore, in the electroproduction case a full treatment
of the scalar cross section amounts to the subtraction of
expression (13) from the NLO direct cross section and to
the addition of the scalar resolved component

dσscalar

dϕdQ2dy
=

α

2π
2(1 − y)

y

1
Q2

∫
dz qS

γ(z, M2
γ , Q2)σ̂, (45)

where we define3

qS
γ(n, M2

γ , Q2) = qS
0 (n)

(
αs(M2

γ )
αs(Q2)

)−2P 0
qq/β0

. (46)

3 This parton distribution in the scalar virtual photon has
been studied in [23,24].

4 NLO parametrization
of the virtual photon structure function

Although the works of Uematsu and Walsh [10] and Rossi
[25] date back to the eighties, interest in the virtual photon
structure function grew much later, thanks to the HERA
experiments. Since then several papers have been published
discussing the parton distributions in virtual photons at the
LLapproximation [26–28] andNLOapproximation [29–31],
and emphasizing the possibility to measure them in elec-
troproduction experiments [13, 14, 32–36]. In this section
we present a study of the parton distributions in virtual
photons performed in the MS scheme, using the results
of Sect. 3 on the inputs at K2 = Q2. We choose Q2 large
enough to neglect non-perturbative effects, and therefore
we do not present results on the limit Q2 → 0. A NLO
study has also been done by the authors of [29, 30] in the
DISγ scheme with emphasis on the real limit Q2 → 0. We
may note however that the solutions of [30] do not fulfil
condition (26) of Sect. 3.

The parton distributions are solutions of the same NLO
inhomogeneous differential equations as in the real case.
The NS equation is given by expressions (16) in which
α
2π P

(0)
qγ and αs

2π P
(0)
qq must be replaced by NLO (two loops)

DGLAP kernels; the equations of the singlet sector as well
as the expressions of the kernels can be found in [21]. The
only change with respect to the real case is the starting
point of the evolution, Q2 instead of Q2

0 ∼ (.5)2 GeV2 in the
real case. The boundary condition for the distributions are
given by expression (41) for the quark distributions and we
have gB

γ (Q2, Q2) = 0 for the gluon distributions. Another
difference from the real case is the existence of a scalar
contribution. The latter has been discussed in Sect. 3.3.

In Sect. 3 we studied the massless case m2
q � Q2. How-

ever
√

Q2 can be smaller than the bottom mass mb and
we have to determine what are the relevant boundary con-
ditions for the bottom quark distribution in the virtual
photon. To find these, let us introduce in expression (7)
the kinematic corresponding to the case in which the pho-
ton interacts with a massive quark:

3
∫ p2

⊥4/(1−z)

Q2z+ m2
1−z

d|k2 − m2|
(k2 − m2)2

×
{

|k2 − m2| z
2 + (1 − z)2

z

+
2m2z − Q2z(z2 + (1 − z)2)

z

}
=

1
z

{
Pqγ(z) ln

p2
⊥4

m2 + Q2z(1 − z)
+ 6z(1 − z)

− 3Q2z(1 − z)
m2 + Q2z(1 − z)

}
. (47)

We notice that for m2 = 0 we find the massless corrections
already given in (8) which are associated with the virtual
factorization scheme.
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For Q2 = 0, we find

1
z

{
Pqγ(z) ln

p2
⊥4

m2 + 6z(1 − z)
}

, (48)

which is the MS correction (once the term ln M2
γ

m2 is sub-
tracted). Therefore, in the massive case (Q2 = 0) we di-
rectly work in the MS-scheme and we do not have to modify
the factorization scheme as discussed in Sect. 3. Therefore,
there exists a transition between case Q2 � m2 and case
Q2 � m2 that we should study in detail.

Let us start from expression (47). When Q2 < m2, we
factorize Pqγ ln

Mγ2

m2 which is the contribution given by the
evolution equation starting at the scale m2. The rest is
given by (without the 1/z prefactor)

Pqγ ln
p2

⊥4

M2
γ

+ 6z(1 − z) + MC<(m2, Q2; z), (49)

with

MC<(m2, Q2; z)

= Pqγ ln
m2

m2 + Q2z(1 − z)
− 3 · Q2z(1 − z)

m2 + Q2z(1 − z)
,

namely the usual massless MS correction and corrections

in Q2/m2. When Q2 > m2, we factorize Pqγ ln M2
γ

Q2 and
we obtain

Pqγ ln
p2

⊥4

M2
γ

+ Pqγ ln
1

z(1 − z)

+6z(1 − z) − 3 + MC>(m2, Q2; z), (50)

with

MC>(m2, Q2; z)

= Pqγ ln
Q2z(1 − z)

m2 + Q2z(1 − z)
+

3 · m2

m2 + z(1 − z)Q2 .

We recognize the massless corrections in the virtual
scheme and a massive m2/Q2 correction.

However the same massive corrections MC>
<

(m2Q2; z)

appear in the calculation of the inhomogeneous kernel k
(1)
q

as outlined in Sect. 3.3. When we add the resolved and the
direct contributions, thesemassive corrections are cancelled
and are replaced by

MC<(m2, Q2; n)(αs(Mγ)2/αs(m2))−2P (0)
qq /β0

or by

MC>(m2, Q2; n)(αs(M2
γ )/αs(Q2))−2P (0)

qq /β0

when Q2 > m2. In the latter case, we still have to add
−[Pqγ(z) ln z(1 − z) + 3] to MC>(m2, Q2; z) to move to
the MS scheme with the result

MC>(m2, Q2; z) (51)

= Pqγ ln
Q2

m2 + Q2z(1 − z)
− 3Q2z(1 − z)

m2 + Q2z(1 − z)
,

which is equal to MC<(m2, Q2; z) when m2 = Q2.
Therefore, we can summarize our treatment of the mas-

sive quarks in the following way. First we assume that the
m2/E2

⊥4 corrections are properly taken into account in the
direct term (or that they are negligible when E2

⊥4 � m2).
Second, we work in the massless MS scheme and we take
into account mass corrections through the input of the
quark distributions. Thus we have the following inputs for
m2

c ≤ Q2 ≤ m2
b (up to charge factors)

u(x, Q2)
d(x, Q2)
s(x, Q2)

 ∼ −Pqγ ln x(1 − x) − 3,

c(x, Q2) ∼ Pqγ ln
Q2

m2
c + Q2z(1 − z)

− 3Q2z(1 − z)
m2

c + Q2z(1 − z)
,

b(x, m2
b) ∼ Pqγ ln

m2
b

m2
b + Q2z(1 − z)

− 3Q2z(1 − z)
m2

b + Q2z(1 − z)
, (52)

whereas for Q2 ≥ m2
b , we have the input

b(x, Q2) (53)

∼ Pqγ ln
Q2

m2
b + Q2z(1 − z)

− 3Q2z(1 − z)
m2

c + Q2z(1 − z)
.

With these inputs we obtain the distributions shown in
Fig. 3. We have chosen Q2 = 8 GeV2 and M2

γ = 25 which
correspond to average values of Q2 and M2

γ = Q2 + E2
⊥4

0 0.2 0.4 0.6 0.8 1
X

0

0.001

0.002

0.003

x(c+cbar)
x(d+dbar)
x(u+ubar)

Fig. 3. The parton distributions in the virtual photon for
Q2 = 8 GeV2 and M2

γ = 25 GeV2
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Fig. 4. The structure function F γ
eff/α compared to L3 data

[4] with Q2 = 3.7 GeV2 and K2 = 120 GeV2. Statistical and
systematical errors are added linearly

of the H1 experiment [8]. The distributions calculated in
the MS scheme increase for x going to 1 as we can see
from Fig. 3. This increase is compensated however by the
behavior of the direct term which contains terms in ln(1−z)
that become negative at large z. We also remark the effect
of the massive input (52) for the charm quark distribution.

We end this section by comparing our results with ex-
perimental data obtained by the L3 collaboration [4] for
the structure function

F γ
eff = F γ

2,⊥ + F γ
2,s, (54)

where the indices ⊥ and s refer to polarization of the tar-
get photon of virtuality Q2 (called P 2 in [4]). In terms
of these components, the usual structure function F γ

2 is
written (the tensor indices refer to the target current)
F γ

2 = − 1
2 gαβ(F γ

2 )αβ = F γ
2,⊥ − 1

2 F γ
2,s. Until now we cal-

culated only the transverse distributions (Fig. 3); in order
to obtain F γ

eff we have to add to F γ
2,⊥ the scalar contribu-

tion defined in expression (46) for the quark component, in
which a gluon distribution is also generated by the DGLAP
evolution equation. All our calculations are done in the
MS scheme.

In Fig. 4 we see that our predictions are in reasonable
agreement with data at low and medium values of x, but
they undershoot them at large values of x. Similar results
have been obtained by the authors of [11].

5 Numerical results

We now turn to a phenomenological study of the deep in-
elastic production of large-E⊥ hadrons. We concentrate
mainly on the resolved contribution studied in this paper
and consider the H1 data [8] already discussed in [15] de-
voted to the direct contribution. This allows us to make a
connection between the results presented here and those

1 10
0

100

200

300

400

500

600
Born
Born+HOs
Born+HOs+Born_resolved
Total

XBj .10 4

ds
ig

m
a/

dx
B

j
(p

b)

Fig. 5. The cross section dσ/dxBj corresponding to the range
4.5 GeV2 ≤ Q2 ≤ 15 GeV2 compared to H1 data [8]

obtained in [15]. A more complete phenomenological study
of the new H1 data [9] will be presented in a future pa-
per [37], in which we shall also discuss in detail the link
between the present NLO cross section and the cross sec-
tion based on the exchange of reggeized gluons [38] in the
t-channel [16,17]

As in the paper of [15], we use the MRST 99 (upper
gluon) distributions for the parton in the proton [39] and
the KKP fragmentation functions [40]. The strong cou-
pling constant is given by an exact solution of the two-
loop-renormalization group equation and we use Λ

(4)
MS

=
300 MeV. We take Nf = 4. Our calculations are performed
at

√
S = 300.3 GeV and the forward-π0 cross section is de-

fined with the following cuts. In the laboratory system a π0

is observed in the forward direction with 5◦ ≤ θπ0 ≤ 25◦;
the laboratory momentum of the pion is constrained by
xπ0 = Eπ0/EP ≥ .01, and an extra cut is put on the π0

transverse momentum in the γ∗–p center of mass system:
E∗

⊥π0 > 2.5 GeV.The inelasticity y = Q2/xBjS is restricted
to the range .1 < y < .6. We consider only the contribu-
tion coming from transversely polarized virtual photons,
we shall comment briefly on the scalar contribution below.

Our numerical results obtained for the distribution
dσ/dxBj measured by H1 [8] in the range 4.5 GeV2 ≤ Q2 ≤
15 GeV2 are shown in Fig. 5. In order to shorten the numer-
ical calculation we do not integrate over Q2, but instead
use the average value of Q2, 〈Q2〉 = 8 GeV2, over the above
range. We use the scale Q2 + E2

⊥4 in the entire series of
calculations and we work in the MS factorization scheme.

The direct HO corrections from which the resolved con-
tribution is subtracted, called HOs, are different from those
obtained in [15] in which we work in the virtual factoriza-
tion scheme. In both schemes they are very large. In [15]
we noticed that the largest contribution to these correc-
tions comes from the subprocesses γ∗ + g → g + q + q and
γ∗ + q → q + q + q. The sum of the HOs contributions and
of the resolved Born contribution should be factorization
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scheme independent, up to O(αs) corrections. To check this
point, let us consider the bin 2.9 · 10−4 ≤ xBj ≤ 3.9 · 10−4.
In [15] we used the virtual factorization scheme and we
obtained dσ/dxBj = 155.5 nb + 52.5 nb = 208.0 nb for
the sum. Note that the parton distributions used in that
case are simply the lowest order distributions (15) without
QCD evolution. In the MS scheme we have dσ/dxBj =
125.9 nb + 95.9 nb = 221.8 nb, but we use the NLO par-
ton distributions. One can check that the small difference
between the two sums comes mainly from the gluon dis-
tributions not present in the lowest order expression. If
we only use the quark MS NLO distributions, we obtain
dσRe/dxBj = 83.1 nb for the resolved contribution and
dσ/dxBj = 209 nb for the sum. This result shows that
the QCD evolution is negligible in this kinematical range
(besides the generation of a small gluon distribution) and
that expression (15) gives a good description, in the vir-
tual factorization scheme, of the parton distributions in a
virtual photon. A similar observation has been made by
the authors of [12] in the case of jet production. Because of
this small evolution, we also have q2

γ(n, M2
γ , Q2) � qS

0 (n).
Therefore, it is not necessary to subtract the scalar resolved
component from the direct term and to introduce a scalar
(QCD evolved) resolved contribution.

The next point to observe from Fig. 5 is the impor-
tance of the HO resolved corrections compared to the Born
resolved contributions, leading to a ratio NLO/Born �
2 independent of xBj. These large HO corrections cor-
respond to a small value of E⊥4 due to the small cut-
off E∗

⊥π0 ≥ 2.5 GeV. For a larger cut-off, for instance
E∗

⊥π0 ≥ 5 GeV, we obtain NLO/Born = 1.65 in the range
2.9 · 10−4 ≤ xBj ≤ 3.9 · 10−4.

The total cross section is in good agreement with the
data, slightly overshooting them at xB � 4·10−4, and little
room appears to be left for a BFKL-type contribution [17].
However this last statement depends on the scale used in
the calculation, here M = Mγ = MF = µ = (Q2 + E2

⊥4)
1
2 ,

because the cross section strongly depends on the scale µ.
In [15] we found that this was due to the importance of
the subprocesses γ∗ +g → g + q + q and γ∗ + q → q + q + q
with a gluon exchanged in the t-channel. These processes
correspond to the opening of new channels that are not
present at the Born level. They are of order O(α2

s ) and
sensitive to the value of µ, since there are no loop contri-
butions at this order to compensate for the µ-dependence.
However, this remark is not true for the resolved part of
these subprocesses as soon as HO corrections for the re-
solved cross section are calculated. For instance the sub-
process γ∗ + g → g + q + q contains a resolved lowest
order contribution (γ∗ → qq) + g → g + q + q; loop cor-
rections to this contribution, corresponding to HO correc-
tions to the resolved cross section, generate counter terms
in ln E2

⊥4
µ2 ; these in turn compensate the µ-dependence of

the Born cross section. To check this point let us again
consider the bin 2.9 · 10−4 ≤ xBj ≤ 3.9 · 10−4. Keeping
M = Mγ = MF = (Q2 + E2

⊥4)
1
2 fixed and E∗

⊥π0 > 5 GeV,
we vary µ = C

√
Q2 + E2

⊥4 with C ranging from .15 to 1.0.
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Fig. 6. The variation with µ = C
√

Q2 + E2
⊥4 of the resolved

cross section

The variations with µ2 of the Born and NLO resolved cross
section are shown in Fig. 6.

We see that the behavior of the Born cross section and
that of the NLO cross section are quite different. The latter
has a maximum around C � .2 and is more stable with
respect to the variations of C than the Born contribution.
This behavior does not occur for the NLO direct contri-
bution which always increases when C decreases. Let us
also note that this behavior cannot be observed for the cut
E∗

⊥π0 > 2.5 GeV. The HO corrections are too large and we
cannot reach a maximum of the NLO cross section, even
for very small values of C.

Let us conclude this section by noting another differ-
ence with respect to the direct term in which the large
contributions to the forward cross section come from sub-
processes involving the exchange of one elementary gluon in
the t-channel. In the resolved case, the elementary gluon be-
comes reggeized, due to the HO corrections. Therefore, the
resolved cross section contains contributions corresponding
to the exchange of a reggeized gluon in the t-channel.

6 Conclusion

In this paper we calculated HO corrections to the resolved
part of the DIS cross section for the production of large-
E⊥ π0. This involves the calculations of the HO corrections
to parton distributions in the virtual photon (of virtuality
Q2) and of the HO corrections to the resolved subprocess.

We discuss the issue of the factorization scheme in detail
and we establish the inputs of the parton distributions in
the MS scheme. Then the NLO parton distributions are
obtained by solving the DGLAP inhomogeneous evolution
equation. They are confronted to the LEP data.

Our results for the NLO cross section are compared
with H1 data for the production of forward large-E⊥ π0.
We find a good agreement with the data, once the direct
contribution is added to the resolved one. This result is ob-
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tained for renormalization and factorization scales equal to
Q2 +E2

⊥π0 . In a study of the scale sensitivity, we find that
the resolved cross section is less sensitive to the renormal-
ization scale than the direct cross section. It is interesting to
notice that the authors of [14] obtained very similar results
in their NLO study of the electroproduction of large-E⊥
forward jets.

We conclude that the good agreement between the NLO
calculations and the data leaves little room, in this kine-
matical range, for a BFKL-type contribution which resums
a ladder of reggeized gluon.
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Appendix 1

The square of the graphs in Fig. 1 possess single and dou-
ble poles in k2. Actually, as explained in Sect. 2, the only
relevant quantity is the square of graph (a), Sµν/k4. Let us
isolate the hard subprocess amplitude µ by using the pro-
jector defined in [41] IP = (/k+m)][/η

4k·η (with ηµ = (1, 0, 0, 1)).
On the left-hand side, this acts on the hard cross section,
and on the right-hand side, on the γ∗qq̄ vertices:

Sµν
IP

(eg)2
= −gµν

[
q2 + (m2 − k2)

4η · q

4η · k

]
|µ|2

+2 (qµkν + qνkµ − 2kµkν) |µ|2 (55)

+
m2 − k2

k · η
(ηµ(qν − kν) + ην(qµ − kµ)) |µ|2,

with |µ|2 = Tr{Γ (/p + /k + m)Γ (/k + m)} where Γ describes
the coupling of parton p to the quark. All the expressions
discussed in Sect. 2 can be obtained from (55) and the phase
space integration,∫

d4k′ δ(k′2 − m2)

=
∫

d4k δ
(
(q − k)2 − m2) =

1
4

∫
dk2 dϕkdz,

with the definition z = k·η
q·η = k(−)

q(−) and the relation k2
⊥ =

−(k2 −m2)(1−z)+q2z(1−z)−m2. The difference (Sµν −
Sµν

IP )/k4 does not lead to singular expressions when q2 → 0.
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23. J. Chýla, Phys. Lett. B 488, 289 (2000)
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